sábado, 28 de dezembro de 2013
segunda-feira, 23 de dezembro de 2013
Partícula de Deus (Bóson de Higgs)
BósonPB ou BosãoPE de Higgs é uma partícula elementar bosônica prevista pelo Modelo Padrão de partículas, teoricamente surgida logo após ao Big Bang de escala maciça hipotética predita para validar o modelo padrão atual de partículas e provisoriamente confirmada em 14 de março de 2013. Representa a chave para explicar a origem da massa das outras partículas elementares. Todas as partículas conhecidas e previstas são divididas em duas classes: férmions (partículas com spin da metade de um número ímpar) e bósons (partículas com spin inteiro).
A compreensão dos fenômenos físicos que faz com que certas partículas elementares possuam massa e que haja diferença entre as forças eletromagnética (cuja interação é realizada pelos fótons) e a força fraca (cuja interação é feita pelos bósons W e Z) são críticas em muitos aspectos da estrutura da matéria microscópica e macroscópica; assim se existir, o bóson de Higgs terá um efeito enorme na compreensão do mundo em torno de nós.
O bóson de Higgs foi predito primeiramente em 1964 pelo físico britânico Peter Higgs, trabalhando as ideias de Philip Anderson. Entretanto, desde então não houve condições tecnológicas de buscar a possível existência do bóson até o funcionamento doGrande Colisor de Hádrons (LHC) meados de 2008. A faixa energética de procura do bóson foi se estreitando e, em dezembro de 2011, limites energéticos se encontram entre as faixas de 116-130 GeV, segundo a equipe ATLAS, e entre 115 e 127 GeV de acordo com o CMS. Em 4 de julho de 2012, anunciou-se que uma partícula desconhecida e com massa entre 125 e 127 GeV/c2 foi detectada; físicos suspeitaram na época que se tratava do bóson de Higgs. Em março de 2013, provou-se que a partícula se comportava, interagia e decaía de acordo com as várias formas preditas pelo Modelo Padrão, além de provisoriamente provar-se que ela possuía paridade positiva e spin nulo, dois atributos fundamentais de um bóson de Higgs, indicando fortemente a existência da partícula.
Fora da comunidade científica, é mais conhecida como a partícula de Deus (do original God particle ) devido ao fato desta partícula permitir que as demais possuam diferentes massas - contudo, a tradução literária do inglês seria "a partícula-Deus". Segundo o físico brasileiro Marcelo Gleiser, o título surgiu com o livro do também físico Leon Lederman, que propôs à editora o título Goddamn particle (Partícula maldita), que não tem qualquer vinculação com Deus, e serviria para demonstrar sua frustração em não ter encontrado o bóson de Higgs. Porém Lederman foi convencido a aceitar a mudança por razões comerciais.
Detalhes teóricos
A partícula chamada Bóson de Higgs é de fato o quantum (partícula) de um dos componentes de um campo de Higgs. No espaço vazio, o campo de Higgs adquire um valor diferente de zero, que permeia a cada lugar no universo todo o tempo. Este valor da expectativa do vácuo (VEV) do campo de Higgs é constante e igual a 246 GeV. A existência deste VEV diferente de zero tem um papel fundamental: dá a massa a cada partícula elementar, incluindo o próprio bóson de Higgs. No detalhe, a aquisição de um VEV diferente de zero quebra espontaneamente a simetria de calibre da força eletrofraca, um fenômeno conhecido como o mecanismo de Higgs. Este é o único mecanismo conhecido capaz de dar a massa aos bóson de calibre (particulas transportadoras de força) que é também compatível com teorias do calibre.
No modelo padrão, o campo de Higgs consiste em dois campos carregados neutros e dois componentes, um do ponto zero e os campos componentes carregados são os bósons de Goldstone. Transformam os componentes longitudinais do terceiro-polarizador dos bósons maciços de W e de Z. O quantum do componente neutro restante corresponde ao bóson maciço de Higgs. Como o campo de Higgs é um campo escalar, o bóson de Higgs tem a rotação zero. Isto significa que esta partícula não tem nenhum momentum angularintrínseco e que uma coleção de bósons de Higgs satisfaz as estatísticas de Bose-Einstein.
O modelo padrão não prediz o valor da massa do bóson de Higgs. Discutiu-se que se a massa do bóson de Higgs se encontra, aproximadamente, entre 130 e 190 GeV, então o modelo padrão pode ser válido em escalas da energia toda a forma até a escala de Planck (TeV 1016). Muitos modelos de super-simetria prediziam que o bóson de Higgs teria uma massa somente ligeiramente acima dos limites experimentais atuais e ao redor 120 GeV ou menos. As experiências mais recentes mostram que sua massa está em torno de 125 GeV/c2.
Medidas experimentais
A massa do bóson de Higgs não foi medida experimentalmente. Dentro do modelo padrão, a não observação de sinais desobstruídos em aceleradores de partícula conduz a um limite mais baixo experimental para a massa do bóson de Higgs de 114.4 GeV no nível da confiança de 95%. Não o bastante, um pequeno número de eventos foi gravado pela experiência do LEP no CERN que poderia ser como resultado de bósons interpretados de Higgs, mas a evidência é inconclusiva. Espera-se entre os físicos que o Grande Colisor de Hádrons, construído no CERN, confirme ou negue a existência do bóson de Higgs. As medidas de precisão observáveis da força eletrofraca indicam que a massa modelo padrão do bóson de Higgs tem um limite superior de 175 GeV no nível da confiança de 95% até a data de março de 2006 (que usam uma medida acima da massa superior do quark).
Prêmio Nobel de física 2013[editar | editar código-fonte]
Em 8 de outubro de 2013 foi anunciada a atribuição do prêmio Nobel de física ao belga François Englert e ao britânico Peter Higgs pela descoberta teórica do mecanismo que explicaria a origem da massa das partículas subatômicas, cuja existência foi recentemente confirmada através da descoberta da partícula de Higgs, pelas experiências conduzidas recentemente no CERN
Fonte :
http://pt.wikipedia.org/wiki/B%C3%B3son_de_Higgs
Fonte :
terça-feira, 12 de novembro de 2013
Lista de elementos químicos em uma pessoa que pesa 80 kg : |
Elementos | % | kg |
Oxigênio | 65 | 52 |
Carbono | 18 | 14,4 |
Hidrogênio | 10 | 8 |
Nitrogênio | 3 | 2,4 |
Cálcio | 1.5 | 1,2 |
Fósforo | 1 | 0,8 |
Enxofre | 0.25 | 0,2 |
Potássio | 0.2 | 0,2 |
Cloro | 0.15 | 0,12 |
Sódio | 0.15 | 0,12 |
Magnésio | 0.05 | 0,04 |
Ferro | 0.006 | 0,0048 |
Flúor | 0.0037 | 0,00296 |
Zinco | 0.0032 | 0,00256 |
Silício | 0.002 | 0,0016 |
Zircônio | 0.0006 | 0,00048 |
Rubídio | 0.00046 | 0,000368 |
Estrôncio | 0.00046 | 0,000368 |
Bromo | 0.00029 | 0,000232 |
Chumbo | 0.00017 | 0,000136 |
Nióbio | 0.00016 | 0,000128 |
Cobre | 0.0001 | 0,00008 |
Alumínio | 0.000087 | 0,000070 |
Cádmio | 0.000072 | 0,000058 |
Boro | 0.000069 | 0,000055 |
Bário | 0.000031 | 0,000025 |
Arsênico | 0.000026 | 0,000021 |
Vanádio | 0.000026 | 0,000021 |
Estanho | 0.000024 | 0,000019 |
Mercúrio | 0.000019 | 0,000015 |
Selênio | 0.000019 | 0,000015 |
Manganês | 0.000017 | 0,000014 |
Iodo | 0.000016 | 0,000013 |
Ouro | 0.000014 | 0,000011 |
Níquel | 0.000014 | 0,000011 |
Molibdênio | 0.000013 | 0,000010 |
Titânio | 0.000013 | 0,000010 |
Telúrio | 0.000012 | 0,000010 |
Antimônio | 0.000011 | 0,000009 |
Lítio | 0.0000031 | 0,000002 |
Cromo | 0.0000024 | 0,000002 |
Césio | 0.0000021 | 0,000002 |
Cobalto | 0.0000021 | 0,000002 |
Prata | 0.000001 | 0,0000008 |
Urânio | 0.00000013 | 0,0000001 |
Berílio | 0.000000005 | 4E-09 |
Rádio | 0.00000000000000001 | 8E-18 |
sábado, 9 de novembro de 2013
Antimatéria
Antimatéria - na física de partículas e na química quântica, é a extensão do conceito de antipartícula da matéria, por meio de que a antimatéria é composta de antipartículas da mesma maneira que matéria normal está composta das partículas.
Por exemplo, anti-elétrons (pósitrons, elétrons com carga positiva), antiprótons (prótons com carga negativa) e antinêutrons (com carga nula como os nêutrons) poderiam dar forma a antiátomos da mesma maneira que elétrons, prótons e nêutrons dão forma a átomos normais da matéria.
Além disso, a mistura da matéria e da antimatéria conduziria ao aniquilamento de ambos, da mesma maneira que a mistura das antipartículas e das partículas, criando assim fótons de grande energia (raios gama) e outros pares de partículas e antipartículas. As partículas que resultam do aniquilamento matéria-antimatéria são dotadas de energia igual à diferença entre a massa do descanso dos produtos do aniquilamento e a massa do descanso do par original da matéria-antimatéria, que é sempre grande (ver: aniquilação pósitron-elétron).
Introdução
Introdução
Em 1928, o físico teórico britânico Paul Dirac elaborou uma equação que leva seu nome. Esta equação tornou possível antever a existência dos pósitrons e, portanto, a existência da antimatéria.
Há uma especulação considerável na ciência e na ficção científica a respeito de por que o universo observado parece ser constituído inteiramente de matéria. Especula-se a respeito de outros lugares possivelmente constituídos apenas por antimatéria. Atualmente, a assimetria aparente entre matéria e antimatéria é um dos maiores problemas sem solução da física. Os possíveis processos pelo que ocorreu são explorados mais detalhadamente na bariogênese.
Em 1995, foram produzidos antiátomos de anti-hidrogênio, assim como núcleos de anti-deutério, criados a partir de um antipróton e um antinêutron. Porém, não houve sucesso na obtenção de antimatéria de maior complexidade.
A antimatéria cria-se no universo como resultado da colisão entre partículas de alta energia, como ocorre no centro das galáxias, entretanto, não se tem detectado nenhum tipo de antimatéria como resíduo do Big Bang, coisa que ocorre com a matéria normal. A desigual distribuição entre a matéria e a antimatéria no universo tem sido, durante muito tempo, um mistério. A solução mais provável reside em certa assimetria nas propriedades dos mésons-B e suas antipartículas, os antimésons-B .
Os pósitrons e os antiprótons podem ser armazenados num dispositivo denominado "armadilha" (Penning trap, em inglês), que usa uma combinação de campos magnéticos eelétricos. Para a criação de armadilhas que retenham átomos completos de anti-hidrogênio foram empregados campos magnéticos muito intensos, assim como temperaturasmuito baixas. As primeiras destas armadilhas foram desenvolvidas pelos projetos ATRAP e ATHENA.
O símbolo que se usa para descrever uma antipartícula é o mesmo símbolo da partícula normal, porém com um traço sobre o símbolo. Por exemplo, o antiproton é simbolizado como:
.
As reações entre matéria e antimatéria tem aplicações práticas na medicina como, por exemplo, na tomografia por emissão de pósitrons (PET).
As colisões entre matéria e antimatéria convertem toda a massa possível das partículas em energia. Esta quantidade é muito maior que a energia química ou mesmo a energia nuclear que se podem obter atualmente através de reações químicas, fissão ou mesmo fusão nuclear. A reação de 1 kg de antimatéria com 1 kg de matéria produziria 1.8×1017 J de energia (segundo a equação E=mc²). Em contraste, queimar 1 kg de petróleo produziria 4.2×107 J, e a fusão nuclear de 1 kg de hidrogênio produziria 2.6×1015 J.
A escassez de antimatéria significa que não existe uma disponibilidade imediata para ser usada como combustível. Gerar somente um antipróton é imensamente difícil e requer aceleradores de partículas, assim como imensas quantidades de energia (muito maior do que a obtida pelo aniquilamento do antipróton), devido a ineficiência do processo. Os métodos conhecidos para produzir antimatéria também produzem uma quantidade igual de matéria normal, de forma que o limite teórico do processo é a metade da energia administrada se converter em antimatéria. Inversamente, quando a antimatéria é aniquilada com a matéria ordinária, a energia emitida é o dobro da massa de antimatéria, de forma que o armazenamento de energia na forma de antimatéria poderia apresentar (em teoria) uma eficiência de 100%.
Na atualidade, a produção de antimatéria é muito limitada, porém tem aumentado em progressão geométrica desde o descobrimento do primeiro antipróton em 1995. A taxa atual de produção de antimatéria é entre 1 e 10 nanogramas por ano, esperando-se um incremento substancial com as novas instalações do CERN e da Fermilab.
Considerando as partículas mais elementares que se conhecem atualmente: Lépton (Elétron, Elétron-neutrino, Múon, múon-neutrino, Tau e Tau-neutrino), Quarks (Up, Down, Charm, Strange, Top e Bottom) e Bósons (Fótons, Glúons, Bósons vetoriais mediadores e grávitons), podemos dizer que para cada uma delas, existe uma antipartícula, com massa igual porém com carga elétrica e momento magnético inverso. Elas dão origem ao antielétron (chamado também de pósitron), ao antipróton e ao antinêutron - a antimatéria, portanto.
A Teoria
A Teoria
A teoria mais aceita para a origem do universo é a do Big Bang que diz que tudo se iniciou numa grande expansão. Nos primeiros instantes o universo não era constituído por matéria, mas sim por energia sob forma de radiação. O universo então passou a expandir-se e, consequentemente, a arrefecer. Pares de partícula-antipartícula eram criados e aniquilados em grande quantidade. Com a queda de temperatura a matéria pôde começar a formar hádrons, assim como a antimatéria a formar antihádrons, pois matéria e antimatéria foram geradas em quantidades iguais. Atualmente, no entanto, parece que vivemos em um universo onde só há matéria.
Na realidade, já é estranho que o universo exista, pois, quando a matéria e a antimatéria se encontram, o processo inverso da criação ocorre, ou seja, elas anulam-se gerando apenas energia nesse processo. Seria altamente provável, portanto, que logo após terem sido criadas, partículas e antipartículas se anulassem, impedindo que corpos mais complexos como hádrons, átomos, moléculas, minerais e seres vivos pudessem formar-se. Acredita-se que esse processo de geração e aniquilação realmente ocorreu para quase toda a matéria criada durante o início da expansão do universo, mas o simples fato de existirmos indica que ao menos uma pequena fração de matéria escapou a esse extermínio precoce.
É possível que algum processo, de origem desconhecida, tenha provocado uma separação entre a matéria e a antimatéria. Neste caso existiriam regiões do universo em que a antimatéria e não a matéria seria mais abundante. Planejam-se algumas experiências no espaço para procurar essas regiões. No entanto, como até hoje não se conhece um processo capaz de gerar tal separação, a maioria dos cientistas não acredita nessa hipótese.
Por outro lado, existe a possibilidade de que a natureza trate de forma ligeiramente diferente a matéria e a antimatéria. Se isto for verdade, seria possível que uma pequena fração da matéria inicialmente gerada tenha sobrevivido e formado o universo conhecido hoje. Há resultados experimentais e teóricos que apontam nesta direção.
Experimentos
Experimentos
Experimentos para a produção artifical de antimatéria e seu armazenamento por períodos relativamente longos de tempo vem sendo tentados por cientistas nos últimos anos.
Em setembro de 2010, a equipe internacional ALPHA do CERN (a qual inclui pesquisadores de diversos países, includindo os brasileiros Cláudio Lenz Cesar e Daniel de Miranda Silveira) anunciou que conseguiu pela primeira vez capturar átomos de antimatéria. Foram aprisionados 38 átomos de antihidrogênio no "tanque de antimatéria" criado pelos cientistas, cada um deles ficando retido por mais de um décimo de segundo.
Em junho de 2011, a mesma equipe ALPHA anunciou um novo recorde, ao aprisionar átomos de antimatéria por 1000 segundos (mais de 16 minutos e 35 segundos).
Em março de 2012, a equipe ALPHA anunciou que conseguiu pela primeira vez efetuar medições de propriedades de átomos de antimatéria.
Assinar:
Postagens (Atom)